【题目】已知数列
中,
,且
对任意正整数
都成立,数列
的前
项和为
.
(1)若
,且
,求
;
(2)是否存在实数
,使数列
是公比为1的等比数列,且任意相邻三项
按某顺序排列后成等差数列,若存在,求出所有
的值;若不存在,请说明理由;
(3)若
,求
.(用
表示).
【答案】(1)
;(2)
;(3)
.
【解析】试题分析:
(1)由题意求得首项
,公差
,结合等差数列前n项和公式列方程可得
;
(2)假设存在满足题意的实数k,分类讨论可得
;
(3)结合题意分类讨论,然后分组求和可得
.
试题解析:
(1)
时,
,
所以数列
是等差数列,
此时首项
,公差
,
数列
的前
项和是
;
故
,得
;
(2)设数列
是等比数列,则它的公比
,所以
,
①
为等差中项,则
,
即
,解得
,不合题意;
②
为等差中项,则
,
即
,化简得:
,解得
或
(舍去);
③若
为等差中项,则
,
即
,化简得:
,解得
;
;
综上可得,满足要求的实数
有且仅有一个,
;
(3)
,则
,
,
当
是偶数时, ![]()
,
当
是奇数时, ![]()
,
也适合上式,
综上可得,
.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),以原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
写出曲线
的极坐标的方程以及曲线
的直角坐标方程;
若过点
(极坐标)且倾斜角为
的直线
与曲线
交于
,
两点,弦
的中点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
经过点
,离心率
,直线
的方程为
.
![]()
求椭圆
的方程;
是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
,
,
的斜率为
,
,
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是B1B,B1C1 , CD的中点,则MN与D1P所成角的余弦值为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
③
是
的充要条件;
④“am2<bm2”是“a<b”的充分必要条件.
以上说法中,判断错误的有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元,每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用
是多少元?
(2)设该厂
天购买一次配料,求该厂在这
天中用于配料的总费用
(元)关于
的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com