精英家教网 > 高中数学 > 题目详情
用数学归纳法证明等式:

对于一切都成立.
利用数学归纳法。

试题分析:(1)当n=1时,左边= ,右边=,等式成立。
(2)假设n=k时,等式成立,即=
那么n=k+1时,……
=
=
这就是说,当n=k+1时 等式也成了
故对一切等式都成立。
点评:容易题,利用数学归纳法,可证明与自然数有关的命题,证明过程中,要注意规范写出“两步一结”。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”,那么,下列命题总成立的是 (  )
A.若成立,则成立
B.若成立,则当时,均有成立
C.若成立,则成立
D.若成立,则当时,均有成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是否存在实数使得关于n的等式
成立?若存在,求出的值并证明等式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个命题P(k),k=2n(n∈N),若n =1,2,…,1000时,P(k)成立,且当时它也成立,下列判断中,正确的是(   )
A.P(k)对k=2013成立B.P(k)对每一个自然数k成立
C.P(k)对每一个正偶数k成立D.P(k)对某些偶数可能不成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不等式某同学应用数学归纳法证明的过程如下:
(1)当时,,不等式成立
(2)假设时,不等式成立,即
那么时,

不等式成立根据(1)(2)可知,对于一切正整数不等式都成立。上述证明方法(    )
A.过程全部正确B.验证不正确
C.归纳假设不正确D.从的推理不正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列等式:;……
则当时,              .(最后结果用表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列{an}中,an=1-+…+,则ak+1等于(  )
A.akB.ak
C.akD.ak

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明“”对于的正整数均成立”时,第一步证明中的起始值应取(   )
A. 1B. 3C. 6D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明“”时,在验证成立时,左边应该是(       )
A.B.C.D.

查看答案和解析>>

同步练习册答案