精英家教网 > 高中数学 > 题目详情
2.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此椭圆上存在不同的两点A,B关于直线y=4x+m对称,则实数m的取值范围是(  )
A.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{2}}{13}$)B.(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)C.(-$\frac{\sqrt{2}}{13}$,$\frac{2\sqrt{13}}{13}$)D.(-$\frac{2\sqrt{3}}{13}$,$\frac{2\sqrt{3}}{13}$)

分析 设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),利用平方差法与直线y=4x+m可求得x0=-m,y0=-3m,点M(x0,y0)在椭圆内部,将其坐标代入椭圆方程即可求得m的取值范围.

解答 解:椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,即:3x2+4y2-12=0,
设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),
则 3x12+4y12-12=0,①
3x22+4y22-12=0 ②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,即 3•2x0•(x1-x2)+4•2y0•(y1-y2)=0,
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{3}{4}$•$\frac{{x}_{0}}{{y}_{0}}$=-$\frac{1}{4}$.
∴y0=3x0,代入直线方程y=4x+m得x0=-m,y0=-3m;
因为(x0,y0)在椭圆内部,
∴3m2+4•(-3m)2<12,即3m2+36m2<12,解得-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.
故选:B.

点评 本题考查直线与圆锥曲线的综合问题,着重考查平方差法的应用,突出化归思想的考查,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,F1,F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a\;,\;b>0)$的左、右两焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{2i}{1-i}$等于(  )
A.-2+2iB.1+iC.-1+iD.2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,θ∈(0,$\frac{π}{2}$),求sin(2θ-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在空间直角坐标系中,已知A(1,0,0),B(4,-3,0),且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,则点P的坐标是(3,-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨<$\frac{π}{2}$)的部分图象如图所示,则f(x)的解析式为(  )
A.f(x)=2sin(x+$\frac{π}{3}$)B.f(x)=2sin(2x+$\frac{π}{6}$)C.f(x)=2sin(2x-$\frac{π}{6}$)D.f(x)=2sin(4x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a∈R,若x>0时,均有(3ax-2)(x2-ax-2)≥0,则a=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.空间直角坐标系xOy中,x轴上的一点M到点A(1,-3,1)与点B(2,0,2)的距离相等,则点M的坐标(  )
A.(-$\frac{3}{2}$,0,0)B.(3,0,0)C.($\frac{3}{2}$,0,0)D.(0,-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题p:函数y=log2($\sqrt{{x}^{2}+1}-x$)是奇函数,命题q:“对函数f(x),若f′(x0)=0,则x=x0为函数的极值点”.则下列命题中真命题是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

同步练习册答案