精英家教网 > 高中数学 > 题目详情
精英家教网如右图所示,有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,且上底CD的端点在圆周上,写出梯形周长y关于腰长x的函数关系式,并求出它的定义域.
分析:如图所示,连接OD,OC,在△OAD中,若设∠AOD=θ,由余弦定理可得,cosθ=
2R2-x2
2R2
;在△OCD中,由∠COD=180°-2θ,可得DC2=2R2-2R2•cos(180°-2θ),从而得DC;即得梯形的周长y和x的取值范围.
解答:解:如图所示,连接OD,OC,则OC=OD=OA=OB=R,精英家教网
在△OAD中,设∠AOD=θ,AD=x,由余弦定理,得
x2=2R2-2R2•cosθ,θ∈(0,90°),∴cosθ=
2R2-x2
2R2

在△OCD中,∠COD=180°-2θ,同理
DC2=2R2-2R2•cos(180°-2θ)=2R2(1+cos2θ)=2R2•2cos2θ=4R2•cos2θ,
∴DC=2R•cosθ=2R•
2R2-x2
2R2
=2R-
x2
R

所以梯形的周长:y=2R+2x+(2R-
x2
R
)=-
x2
R
+2x+4R;
∵x2=2R2-2R2•cosθ<2R2,∴x<
2
R,∴定义域为(0,
2
R).
点评:本题考查了余弦定理在解三角形中的应用,也考查了二倍角公式的灵活应用;解题时应细心计算,以避免出现错误.
练习册系列答案
相关习题

科目:高中数学 来源:2014届江苏省高二下学期期中考试数学理科试卷(解析版) 题型:解答题

(1) 在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.已知在以O为极点,x轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求|AB|.

(2) 某旅游景点给游人准备了这样一个游戏,他制作了“迷尼游戏板”:在一块倾斜放置的矩形胶合板上钉着一个形如“等腰三角形”的八行铁钉,钉子之间留有空隙作为通道,自上而下第1行2个铁钉之间有1个空隙,第2行3个铁钉之间有2个空隙,…,第8行9个铁钉之间有8个空隙(如图所示).东方庄家的游戏规则是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付给庄家2元.若小球到达①②③④号球槽,分别奖4元、2元、0元、-2元.(一个玻璃球的滚动方式:通过第1行的空隙向下滚动,小球碰到第二行居中的铁钉后以相等的概率滚入第2行的左空隙或右空隙.以后小球按类似方式继续往下滚动,落入第8行的某一个空隙后,最后掉入迷尼板下方的相应球槽内).恰逢周末,某同学看了一个小时,留心数了数,有80人次玩.试用你学过的知识分析,这一小时内游戏庄家是赢是赔? 通过计算,你得到什么启示?

 

查看答案和解析>>

同步练习册答案