精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,.为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)已知曲线与曲线交于两点,且,求实数的值.

【答案】(1)曲线普通方程,曲线的直角坐标方程;(2).

【解析】

1)将代入 的普通方程;

左右同时乘以,再化简得到曲线的直角坐标方程。

2)将代入,得,利用韦达定理与参数的几何意义可求出实数的值。

(1)曲线参数方程为

则其普通方程

因为曲线的极坐标方程为

所以

,即曲线的直角坐标方程.

(2)设两点所对应参数分别为

代入,得

要使有两个不同的交点,

,即

由韦达定理有,根据参数的几何意义可知

又由可得,即

时,有,符合题意.

时,有,符合题意.

综上所述,实数的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图甲,在直角梯形中,ABCDABBCCD=2AB=2BC=4,过A点作AECD,垂足为E,现将ΔADE沿AE折叠,使得DEEC.AD的中点F,连接BFCFEF,如图乙。

(1)求证:BC⊥平面DEC

(2)求二面角C-BF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:

温差

8

10

11

12

13

发芽数(颗)

79

81

85

86

90

(1)请根据统计的最后三组数据,求出关于的线性回归方程

(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;

(3)若100颗小麦种子的发芽率为颗,则记为的发芽率,当发芽率为时,平均每亩地的收益为元,某农场有土地10万亩,小麦种植期间昼夜温差大约为,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为双曲线的左右焦点,M为双曲线左支上的点,的周长是18,动点P在双曲线的右支上,则面积的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,平面ABCD.

1)求证:平面PAD

2)求PD与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,四边形为矩形,.

(1)求证:平面

(2)设,求平面与平面所成的二面角的正弦值.

查看答案和解析>>

同步练习册答案