【题目】如图,已知四棱锥中,四边形为矩形,,,.
(1)求证:平面;
(2)设,求平面与平面所成的二面角的正弦值.
【答案】(1)见证明;(2)
【解析】
(1)证明BC平面SDC,即可证得AD平面SDC,即可证得SCAD,利用SC2+SD2=DC2证得SCSD,问题得证。
(2)以点O为原点,建立坐标系如图,求得S(0,0,),C(0,,0), A(2,-,0),B(2,,0),利用即可求得E(2,,0),求得 , ,利用空间向量夹角公式计算即可得解。
(1)证明: BCSD ,BCCD
则BC平面SDC, 又
则AD平面SDC,平面SDC
SCAD
又在△SDC中,SC=SD=2, DC=AB,故SC2+SD2=DC2
则SCSD ,又
所以 SC平面SAD
(2)解:作SOCD于O,因为BC平面SDC,
所以平面ABCD平面SDC,故SO平面ABCD
以点O为原点,建立坐标系如图.
则S(0,0,),C(0,,0), A(2,-,0),B(2,,0)
设E(2,y,0),因为
所以 即E((2,,0)
令,则,
,令,则,
所以所求二面角的正弦值为
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数,).以为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)已知曲线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个顶点为抛物线的焦点,点在椭圆上且,关于原点的对称点为,过作的垂线交椭圆于另一点,连交轴于.
(1)求椭圆的方程;
(2)求证:轴;
(3)记的面积为的面积为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,梯形与平行四边形所在平面互相垂直, ,,,,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判断线段上是否存在点,使得平面平面?若存在,求 出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学). 现用分层抽样方法(按A类、B类分两层)从该年级学生中共抽查100名同学,测得这100名同学的身高(单位:)频率分布直方图如图:
(Ⅰ)以同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表,计算这100名学生身高数据的平均值;
(Ⅱ)如果以身高不低于作为达标的标准,对抽取的100名学生,得到以下列联表:
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | ||
不积极参加体育锻炼 | 15 | ||
总计 | 100 |
完成上表,并判断是否有的把握认为体育锻炼与身高达标有关系(值精确到0.01)?
参考公式:
参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com