精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个顶点为抛物线的焦点,点在椭圆上且关于原点的对称点为,过的垂线交椭圆于另一点,连轴于.

1)求椭圆的方程;

2)求证:轴;

3)记的面积为的面积为,求的取值范围.

【答案】1;(2)证明见解析;(3.

【解析】

1)由抛物线的焦点为:,故,可得椭圆的方程;

2)由,可得:,直线的方程,联立直线与椭圆可得T点坐标,写出的方程,令,可得,进而的出结论.

3) 分别用坐标表示,再分析取值范围即可.

1)抛物线的焦点为:,故

椭圆的方程为:

2)由,可得:,即

可得直线的方程:,即:

联立直线与椭圆的方程可得:

可得,可得:

可得:

可得:

故直线的方程为:

,可得,故,轴;

3,

故:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:

温差

8

10

11

12

13

发芽数(颗)

79

81

85

86

90

(1)请根据统计的最后三组数据,求出关于的线性回归方程

(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;

(3)若100颗小麦种子的发芽率为颗,则记为的发芽率,当发芽率为时,平均每亩地的收益为元,某农场有土地10万亩,小麦种植期间昼夜温差大约为,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点作动直线与抛物线相交于两点.

(1)当直线的斜率是时,,求抛物线的方程;

(2)设的中点是,利用(1)中所求抛物线,试求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,kR.

(I)求函数f(x)的单调区间;

(II)k>0时,若函数f(x)在区间(1,2)内单调递减,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为

(Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;

(Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,四边形为矩形,.

(1)求证:平面

(2)设,求平面与平面所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

同步练习册答案