精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)讨论的极值点;

(2)若有最大值,求的最小值.

【答案】(1)时,无极值点,时,为极大值点,无极小值点;(2)

【解析】

1)函数fx)的定义域为(0+∞),对f(x)求导,对分类讨论即可得出.

2)由(1)利用单调性先得到b的关系,代入所求,构造函数求导即可得出.

1)函数fx)的定义域为(0+∞),

a≤0时,f'x)>0,∴fx)在(0+∞)上单调递增,无极值点;

a0时,解f'x)>0

fx)在上单调递增,在上单调递减,所以为极大值点,无极小值点;

2)由(1)知,当a0时,fx)在上单调递增,在上单调递减.

,∴

,则

ha)在上单调递减,在上单调递增,

,∴a+2b的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为

(Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;

(Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,四边形为矩形,.

(1)求证:平面

(2)设,求平面与平面所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数为偶函数,且在区间内是单调递增函数.

(1)求函数的解析式;

(2)设函数,若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到个组成,周而复始,循环记录。2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()

A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖,又称十二属相,中国古人拿十二种动物来配十二地支,组成子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪十二属相。现有十二生肖吉祥物各一件,甲、乙、丙三位同学一次随机抽取一件作为礼物,甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,则这三位同学抽取的礼物都喜欢的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

同步练习册答案