精英家教网 > 高中数学 > 题目详情
函数=的最小值为________________.
3

试题分析:因为,图出其图象:易知的最小值为:3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,某单位准备修建一个面积为600平方米的矩形场地(图中)的围墙,且要求中间用围墙隔开,使得为矩形,为正方形,设米,已知围墙(包括)的修建费用均为800元每米,设围墙(包括)的修建总费用为元。
(1)求出关于的函数解析式;
(2)当为何值时,设围墙(包括)的的修建总费用最小?并求出的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(1)若的最小值为2,求值;(2)设函数有零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000m2,人行道的宽分别为4m和10m(如图所示).
(1)若设休闲区的长和宽的比,求公园ABCD所占面积S关于x的函数解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽应如何设计?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于函数若存在成立,则称的不动点.已知
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某渔业公司年初用49万元购买一艘捕鱼船,第一年各种费用6万元,以后每年都增加2万元,每年捕鱼收益25万元.
(1)问第几年开始获利?
(2)若干年后,有两种处理方案:①年平均获利最大时,以18万元出售该渔船;②总纯收入获利最大时,以9万元出售该渔船.问哪种方案最合算?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题p:?x∈Q,x∈Z的否定是(  )
A.?p:?x∈Q,x∉ZB.?p:?x∉Q,x∈Z
C.?p:?x∈Q,x∈ZD.?p:?x∈Q,x∉Z

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,那么使得的数对             个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线与曲线满足下列两个条件:
直线在点处与曲线相切;曲线附近位于直线的两侧,则称直线在点处“切过”曲线.
下列命题正确的是_________(写出所有正确命题的编号)
①直线在点处“切过”曲线
②直线在点处“切过”曲线
③直线在点处“切过”曲线
④直线在点处“切过”曲线
⑤直线在点处“切过”曲线

查看答案和解析>>

同步练习册答案