精英家教网 > 高中数学 > 题目详情

【题目】某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出x(xN*)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a﹣0.8x%)万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.4x%.

(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?

2)若要保证剩余员工创造的年总利润不低于原来1000名员工创遣的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?

【答案】(1)750(2)

【解析】

(1)根据题意可列出解不等式即可求得的范围从而可得结果;(2)根据题意分别表示出从事第三产业员工的创造的年总利润和从事原来产业的员工的年总利润根据调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,建立不等式利用不等式恒成立,分离参数后,根据均值不等式求得的取值范围.

(1)由题意,得

即最多调整出750名员工从事第三产业.

(2)从事第三产业的员工创造的年利润为万元

从事原来产业的员工的年总利润为万元

所以

所以时恒成立,

因为当且仅当

时等号成立,

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.

1)求的值;

2)当时,求函数的最大值和最小值;

3)设,若的任意一条对称轴与x轴的交点的横坐标不属于区间,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有编号为1,2,3…n的n个学生,入座编号为1,2,3…n的n个座位,每个学生规定坐一个座位, 设学生所坐的座位号与该生的编号不同的学生人数为, 已知时, 共有6种坐法.

(1)求的值;

(2)求随机变量的概率分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线为.

(1)当求证函数的图像(除切点外)均为切线的下方

(2)当的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0)的最小正周期为,则(  )

A. 函数f(x)的一个零点为

B. 函数fx)的图象关于直线x对称

C. 函数fx)图象上的所有点向左平移个单位长度后,所得的图象关于y轴对称

D. 函数fx)在(0,)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:

转速x(转/秒)

2

4

5

6

8

每小时生产有缺点的零件数y(件)

30

40

60

50

70

1)画散点图;

2)如果yx有线性相关关系,求回归直线方程;

3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.

(1)求曲线C2和直线l的普通方程.

(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过点,且在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201913日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M,地月距离为R点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:

.

,由于的值很小,因此在近似计算中,则r的近似值为

A. B.

C. D.

查看答案和解析>>

同步练习册答案