【题目】两圆x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则 的最小值为( )
A.
B.
C.1
D.3
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax﹣﹣2lnx.
(Ⅰ)若f(x)在x=2时有极值,求实数a的值和f(x)的极大值;
(Ⅱ)若f(x)在定义域上是减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-(a+2)x+ln x.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;
(3)若对任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2+bx+4
(1)若f(x)为偶函数,求b的值;
(2)若f(x)有零点,求b的取值范围;
(3)求f(x)在区间[﹣1,1]上的最大值g(b).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数,﹣π<α<0),曲线C2的参数方程为 (t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2射线θ=﹣ 与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , , 分别为的中点, 为底面的重心.
(Ⅰ)求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com