精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=x2+bx+4
(1)若f(x)为偶函数,求b的值;
(2)若f(x)有零点,求b的取值范围;
(3)求f(x)在区间[﹣1,1]上的最大值g(b).

【答案】
(1)解:因为f(x)为偶函数,

所以x2+bx+4=x2﹣bx+4,

解得b=0


(2)解:因为f(x)有零点,

所以△=b2﹣16≥0,

解得b≥4或b≤﹣4


(3)解:因为f(x)的对称轴为

,即b≤0时,

g(b)=f(﹣1)=5﹣b;

,即b>0时,

g(b)=f(1)=5+b.

综上所述:


【解析】(1)因为f(x)为偶函数,所以f(﹣x)=f(x),列出等式,求出b的值即可;(2)根据f(x)有零点,可得△≥0,据此求出b的取值范围即可;(3)首先求出f(x)的对称轴 ,然后分① ,② 两种情况讨论,求出f(x)在区间[﹣1,1]上的最大值g(b)即可.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是减函数的是(
A.y=x
B.y=
C.y=﹣x3
D.y=( x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差

10

11

13

12

8

发芽数/颗

23

25

30

26

16

(1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

附:回归直线的斜率和截距的最小二乘估计公式分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】顶点在原点,焦点在x轴正半轴的抛物线,经过点(3,6),
(1)求抛物线截直线y=2x﹣6所得的弦长.
(2)讨论直线y=kx+1与抛物线的位置关系,并求出相应的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两圆x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则 的最小值为(
A.
B.
C.1
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①直线l的方向向量为 =(1,﹣1,2),直线m的方向向量 =(2,1,﹣ ),则l与m垂直;
②直线l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),则l⊥α;
③平面α、β的法向量分别为 =(0,1,3), =(1,0,2),则α∥β;
④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,则u+t=1.
其中真命题的是 . (把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在长方体ABCD﹣A1B1C1D1中,E、M、N分别是BC、AE、D1C的中点,AD=AA1 , AB=2AD
(Ⅰ)证明:MN∥平面ADD1A1
(Ⅱ)求直线AD与平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

同步练习册答案