精英家教网 > 高中数学 > 题目详情
设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x+c(c为常数).
(1)求f(x)的表达式
(2)对于任意x1,x2∈[0,1]且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|.
分析:(1)根据g(x)的图象与f(x)的图象关于直线x=1对称,则f(x+1)=g(1-x)即f(x)=g(2-x),从而可求出-1≤x≤0时函数f(x)的解析式,最后根据奇偶性求出函数在0<x≤1上的解析式,从而可得f(x)的表达式;
(2)当x1,x2∈[0,1]且x1≠x2时,0<x1+x2<2,代入解析式进行化简变形,即可证得结论.
解答:解:(1)∵g(x)的图象与f(x)的图象关于直线x=1对称
∴f(x+1)=g(1-x)
∴f(x)=g(2-x)
当-1≤x≤0时,2≤2-x≤3,
∵当x∈[2,3]时,g(x)=-x2+4x+c(c为常数).
∴f(x)=-(2-x)2+4(2-x)+c=-x2+c+4
当0<x≤1时,-1≤-x<0,∴f(-x)=-x2+c+4
由于f(x)是奇函数,∴f(-x)=-f(x)
∴f(x)=x2-c-4
f(x)=
-x2+c+4,(-1≤x≤0)
x2-c-4,(0<x≤1)

(2)当x1,x2∈[0,1]且x1≠x2时,0<x1+x2<2,
∴|f(x2)-f(x1)|=|
x
2
2
-
x
2
1
|=|(x2-x1)(x2+x1)|<2|x2-x1|
∴|f(x2)-f(x1)|<2|x2-x1|.
点评:本题以函数为载体,考查函数的奇偶性,考查函数的解析式,同时考查了不等式的证明,解题的关键是正确利用函数的对称性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=
12
对称,则f(1)+f(2)+f(3)+f(4)+f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

例2.设f(x)是定义在[-3,
2
]上的函数,求下列函数的定义域(1)y=f(
x
-2)
(2)y=f(
x
a
)(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,g(x)的图象与f(x)的图象关于直线x=1对称,而当x∈[2,3]时,g(x)=-x2+4x-4.
(Ⅰ)求f(x)的解析式;
(Ⅱ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|<2|x2-x1|;
(Ⅲ)对任意x1,x2∈[0,1],且x1≠x2,求证:|f(x2)-f(x1)|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

同步练习册答案