【题目】某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为 ,二等品率为 ;B型产品的一等品率为 ,二等品率为 .生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元.设生产各件产品相互独立.
(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记X(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求X的分布列及期望值.
【答案】
(1)解:由题意得一等品件数为3或4
∴P=C430.83×0.2+C440.84=0.8192
即生产4件A型产品所获得的利润不少于10万元的概率为0.8192
(2)解:由题意X的所有可能取值为10,5,2,﹣3
P(X=10)=0.8×0.9=0.72;
P(X=5)=0.2×0.9=0.18P
(X=2)=0.8×0.1=0.08P
(X=﹣3)=0.2×0.1=0.02
∴X的分布列为
X | ﹣3 | 2 | 5 | 10 |
P | 0.02 | 0.08 | 0.18 | 0.72 |
EX=(﹣3)×0.02+2×0.08+5×0.18+10×0.72=8.2
【解析】(1)生产4件A型产品所获得的利润不少于10万元得到一等品件数为3或4,这两种情况是互斥的,根据变量符合独立重复试验,写出概率.(2)由题意X的所有可能取值为10,5,2,﹣3,结合变量对应的事件和相互独立事件的概率公式,写出变量的概率,得到变量的分布列和期望值.
科目:高中数学 来源: 题型:
【题目】如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,AB=AC=6,OE∥AD
(1)求二面角B﹣AD﹣F的大小;
(2)求直线BD与EF所成的角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDE中,∠BAC=90°,AB=AC=2,CD=2AE=2,AE∥CD,且AE⊥底面ABC,F为BC的中点.
(1)求证:AF⊥BD;
(2)求二面角A﹣BE﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4sin2( + )sinx+(cosx+sinx)(cosx﹣sinx)﹣1.
(1)化简f(x);
(2)常数ω>0,若函数y=f(ωx)在区间 上是增函数,求ω的取值范围;
(3)若函数g(x)= 在 的最大值为2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是( )
A.h=8cost+10
B.h=﹣8cos t+10
C.h=﹣8sin t+10
D.h=﹣8cos t+10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F、G分别是AC、BC中点.
(1)求证:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com