精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,若存在x1 , x2∈R,x1≠x2 , 使f(x1)=f(x2)成立,则实数a的取值范围是

【答案】( ,+∞)∪(﹣∞,0]
【解析】解:依题意,在定义域内,函数f(x)不是单调函数,分情况讨论:

①当x≥1时,若f(x)=x2 ﹣3ax 不是单调的,它的对称轴为x= a,则有 a>1,

解得a>

②当x≥1时,若f(x)=x2 ﹣3ax 是单调的,则f(x)单调递增,此时 a≤1,即a≤

当x<1时,由题意可得f(x)=ax+1﹣4a应该不单调递增,故有a≤0.

综合得:a的取值范围是( ,+∞)∪(﹣∞,0].

故答案为:( ,+∞)∪(﹣∞,0].

由题意可得,在定义域内,函数f(x)不是单调的,考虑x≥1时,讨论函数的单调性,即可求得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣1+lnx,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinxcosx+sin2x﹣
(1)求f(x)的最小正周期及其对称轴方程;
(2)设函数g(x)=f( + ),其中常数ω>0,|φ|< . (i)当ω=4,φ= 时,函数y=g(x)﹣4λf(x)在[ ]上的最大值为 ,求λ的值;
(ii)若函数g(x)的一个单调减区间内有一个零点﹣ ,且其图象过点A( ,1),记函数g(x)的最小正周期为T,试求T取最大值时函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为 ,二等品率为 ;B型产品的一等品率为 ,二等品率为 .生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元.设生产各件产品相互独立.
(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记X(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求X的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 点M(0,2)关于直线y=﹣x的对称点在椭圆C上,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A,B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2x,g(x)=x2+2x,数列{an}的前n项和记为Sn , bn为数列{bn}的通项,n∈N* . 点(bn , n)和(n,Sn)分别在函数f(x)和g(x)的图象上.
(1)求数列{an}和{bn}的通项公式;
(2)令Cn= ,求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图示,A,B分别是椭圆C: (a>b>0)的左右顶点,F为其右焦点,2是|AF与|FB|的等差中项, 是|AF|与|FB|的等比中项.点P是椭圆C上异于A、B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.

(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出N点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点B(﹣1,﹣3),边AB上的高CE所在直线的方程为4x+3y﹣7=0,BC边上中线AD所在的直线方程为x﹣3y﹣3=0.
(1)求点C的坐标;
(2)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线焦点F1 , F2相同,且离心率互为倒数,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案