精英家教网 > 高中数学 > 题目详情

(本小题满分14分)  一圆形纸片的半径为10cm,圆心为O

F为圆内一定点,OF=6cm,M为圆周上任意一点,把圆纸片折叠,

使MF重合,然后抹平纸片,这样就得到一条折痕CD,设CD

OM交于P点,如图

(1)求点P的轨迹方程;

(2)求证:直线CD为点P轨迹的切线.

 

 

 

 

【答案】

解:(1)由题意知点M、F关于直线CD对称,连结PF,

则PF=NF,故PF+PO=PO+PM=10>6=OF.

故点P 的轨迹是以O、F为焦点、长轴长为10 的椭圆。

以OF所在的直线为x轴,线段OF的中垂线为y轴建立

平面直角坐标系。易求得点P的方程为:;………………………8分

(2)假设CD不是点P轨迹的切线。则直线CD与椭圆一定相交。

QCD上异于P的另一个交点,

QF+QO=QM+QO>OM,这与点Q在椭圆上矛盾,假设不成立。

故直线CD与该椭圆切于点P.   ………………………14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案