精英家教网 > 高中数学 > 题目详情
有一个正四棱锥,它的底面边长和侧棱长均为a,现在要用一张正方形的包装纸将它完全包住(不能裁剪纸,但可以折叠)那么包装纸的最小边长应为
 
分析:本题考查的是四棱锥的侧面展开问题.在解答时,首先要将四棱锥的四个侧面沿底面展开,观察展开的图形易知包装纸的对角线处在什么位置是,包装纸面积最小,进而获得问题的解答.
解答:精英家教网解:由题意可知:当正四棱锥沿底面将侧面都展开时如图所示:
分析易知当以PP′为正方形的对角线时,
所需正方形的包装纸的面积最小,此时边长最小.
设此时的正方形边长为x则:(PP′)2=2x2
又因为PP′=a+2×
3
2
a=a+
3
a

( a+
3
a)
2
=2x2

解得:x=
6
+
2
2
a

故答案为:
6
+
2
2
a
点评:本题考查的是四棱锥的侧面展开问题.在解答的过程当中充分体现了侧面展开的处理问题方法、图形的观察和分析能力以及问题转化的思想.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为(  )
A、
2
+
6
2
a
B、(
2
+
6
)a
C、
1+
3
2
a
D、(1+
3
)a

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪,但可以折叠),那么包装纸的最小边长应为    (    )

A.       B.         C.          D.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个正四棱锥,它的底面边长与侧棱长均为a,现用一张正方形包装纸将其完全包住(不能裁剪,但可以折叠),那么包装纸的最小边长应为(    )

A.a      B.()a   C.a        D.(1+)a

查看答案和解析>>

同步练习册答案