【题目】在四棱锥
中,
,
,
,
,
,
,则三棱锥
外接球的表面积为( )
A.
B.
C.
D.![]()
【答案】D
【解析】
作出图形,取
的两个三等分点
、
,连接
、
、
,设
,连接
、
,推导出
为
的外心,计算出
、
、设
为三棱锥
外接球的球心,连接
、
、
,过
作
,垂足为
,并设三棱锥
的外接球半径为
,设
,通过几何关系列等式求出
的值,利用球体的表面积公式可求得结果.
如图,取
的两个三等分点
、
,连接
、
、
,
设
,连接
、
.
则
,
,又
,
,
所以,四边形
为平行四边形,
,
为
的中点,
所以,
,
由勾股定理可得
,则
,
在
中,
,
,
,
,又
,则
为等边三角形,
,则
是
的外接圆的圆心.
因为
,
为
的中点,
,
,
,
,
,
,
,又
,
,
平面
,
且
.
设
为三棱锥
外接球的球心,连接
、
、
,过
作
,垂足为
,
![]()
则外接球的半径
满足
,
设
,则
,解得
,
从而
,故三棱锥
外接球的表面积为
.
故选:D.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面
为平行四边形,
,
分别为
,
的中点.
![]()
(1)求证:
平面
.
(2)在线段
上是否存在一点
使得
,
,
,
四点共面?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某森林公园内有一条宽为100米的笔直的河道(假设河道足够长),现拟在河道内围出一块直角三角形区域养殖观赏鱼.三角形区域记为
,
到河两岸距离
,
相等,
,
分别在两岸上,
.为方便游客观赏,拟围绕
区域在水面搭建景观桥.为了使桥的总长度
(即
的周长)最短,工程师设计了以下两种方案:
![]()
方案1:设
,求出
关于
的函数解析式
,并求出
的最小值.
方案2:设
米,求出
关于
的函数解析式
,并求出
的最小值.
请从以上两种方案中自选一种解答.(注:如果选用了两种解答方案,则按第一种解答计分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒(SARS-COV-2)是2019年在人体中发现的冠状病毒新毒株,主要通过呼吸道飞沫进行传播,鉴于其特殊的传播途径,某科学医疗机构发现一次性医用口罩起着一定的防护作用一般,口罩在投入市场前需做一系列的检测,其中罩体污点、鼻梁条缺陷、耳绳异常等常规瑕疵肉眼可见,而耳绳尤为关键,会出现耳绳缺失、错位、错熔、漏熔四种情况 .现在生产商大多采用全自动生产线生产口罩,某工厂现有甲(1台本体机拖2台耳带机)和乙(1台本体机拖3台耳带机)两条生产线,已知甲生产线的日产量为7万只,乙生产线的日产量为10万只,生产商为了了解是否有必要更换原有的甲生产线,在设备生产状况相同,不计其他影响的状态下,分别统计了两条生产线生产的1000只口罩的耳绳情况,得到的统计数据如下:
耳绳情况 | 合格 | 缺失 | 错位 | 错熔 | 漏熔 |
甲生产线 | 950 | 9 | 19 | 11 | 11 |
乙生产线 | 900 | 19 | 35 | 25 | 21 |
(1)从乙生产线生产的1000只口罩中随机抽取3只,将合格品的只数记为
,求
的分布列和数学期望;
(2)假设口罩的生产成本为0.4元/只,若耳绳发生缺陷时可通过人工修复至合格来挽回损失。耳绳缺失、漏熔时人工修复费为0.01元/只;错位与错熔时需更换耳绳,其中耳绳成本为0.06元/根,人工修复费为0.02元/只.
①以修复费的平均数作为判断依据,判断哪一条生产线在每日生产过程中挽回损失时所需费用较少?
②若经一次检验就合格的口罩,生产商以1元/只的批发价销售给市场,经人工修复的打八折出售。以该工厂的日平均收入为依据分析该生产商是否有必要更换甲生产线?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒(SARS-COV-2)是2019年在人体中发现的冠状病毒新毒株,主要通过呼吸道飞沫进行传播,鉴于其特殊的传播途径,某科学医疗机构发现一次性医用口罩起着一定的防护作用一般,口罩在投入市场前需做一系列的检测,其中罩体污点、鼻梁条缺陷、耳绳异常等常规瑕疵肉眼可见,而耳绳尤为关键,会出现耳绳缺失、错位、错熔、漏熔四种情况 .现在生产商大多采用全自动生产线生产口罩,某工厂现有甲(1台本体机拖2台耳带机)和乙(1台本体机拖3台耳带机)两条生产线,已知甲生产线的日产量为7万只,乙生产线的日产量为10万只,生产商为了了解是否有必要更换原有的甲生产线,在设备生产状况相同,不计其他影响的状态下,分别统计了两条生产线生产的1000只口罩的耳绳情况,得到的统计数据如下:
耳绳情况 | 合格 | 缺失 | 错位 | 错熔 | 漏熔 |
甲生产线 | 950 | 9 | 19 | 11 | 11 |
乙生产线 | 900 | 19 | 35 | 25 | 21 |
(1)从乙生产线生产的1000只口罩中随机抽取3只,将合格品的只数记为
,求
的分布列和数学期望;
(2)假设口罩的生产成本为0.4元/只,若耳绳发生缺陷时可通过人工修复至合格来挽回损失。耳绳缺失、漏熔时人工修复费为0.01元/只;错位与错熔时需更换耳绳,其中耳绳成本为0.06元/根,人工修复费为0.02元/只.
①以修复费的平均数作为判断依据,判断哪一条生产线在每日生产过程中挽回损失时所需费用较少?
②若经一次检验就合格的口罩,生产商以1元/只的批发价销售给市场,经人工修复的打八折出售。以该工厂的日平均收入为依据分析该生产商是否有必要更换甲生产线?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,
:
,动圆C与圆
,
都相切,则动圆C的圆心轨迹E的方程为________________;斜率为
的直线l与曲线E仅有三个公共点,依次为P,Q,R,则
的值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD为正三角形.且PA=2
.
![]()
(1)证明:平面PAB⊥平面PBC;
(2)若点P到底面ABCD的距离为2,E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,右准线为
.点
是椭圆
上异于长轴端点的任意一点,连接
并延长交椭圆
于点
,线段
的中点为
,
为坐标原点,且直线
与右准线
交于点
.
(1)求椭圆
的标准方程;
(2)若
,求点
的坐标;
(3)试确定直线
与椭圆
的公共点的个数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com