分析 (Ⅰ)将两向量的模用坐标表示出来,探究发现点M到两个定点之间的距离和为6,符合椭圆的定义.用定义法写出其标准方程即可.
(Ⅱ)先把直线方程和椭圆方程联立,求出关于点A和点B的坐标的方程①,在利用OAPB为矩形转化为OA⊥OB既为$\overrightarrow{OA}•\overrightarrow{OB}$=0.把①式代入就可求直线AB的方程.
解答 解:(I)∵$\overrightarrow{a}$=(x+1)i+yj,$\overrightarrow{b}$=(x-1)i+yj
又|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4,∵$\sqrt{(x+1)^{2}+{y}^{2}}+\sqrt{(x-1)^{2}+{y}^{2}}=6$.
∴点M(x,y)的轨迹C是以(-1,0)、(1,0)为焦点,长轴长为6的椭圆,
故椭圆方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$.
(Ⅱ)由条件(2)可知OAB不共线,故直线AB的斜率存在,
设AB方程为y=kx+1,A(x1,y1),B(x2,y2)
由$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1}\end{array}\right.$⇒(9k2+8)x2+18kx-63=0,
${x}_{1}+{x}_{2}=\frac{-18k}{9{k}^{2}+8}$,${x}_{1}{x}_{2}=\frac{-63}{9{k}^{2}+8}$
y1•y2=(kx1+1)•(kx2+1)=k2x1•x2+k(x1+x2)+1=$\frac{-72{k}^{2}+8}{9{k}^{2}+8}$
∵OAPB为矩形,∴OA⊥OB⇒$\overrightarrow{OA}•\overrightarrow{OB}$=0.
∴x1•x2+y1•y2=0得72k2=-55,方程无解,
∴不存在直线l,使得四边形OAPB是矩形.
点评 本题综合考查了直线与椭圆的位置关系以及向量垂直问题.在研究直线和圆锥曲线问题时,通常把直线方程和圆锥曲线方程联立,找到关于二者交点坐标的方程,再代入已知条件解题.属于中档题.
科目:高中数学 来源: 题型:解答题
| 甲班 | 乙班 | 丙班 | |
| 男同学 | A | B | C |
| 女同学 | X | Y | Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x-y<1 | B. | lnx>lny | C. | sin x>sin y | D. | x3>y3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | 1008 | C. | 504 | D. | 2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.2 | B. | 0.3 | C. | 0.4 | D. | 0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 空气质量指数 | (0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] |
| 空气质量等级 | 1级优 | 2级良 | 3级轻度 污染 | 4级中度 污染 | 5级重度 污染 | 6级严重污染 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com