精英家教网 > 高中数学 > 题目详情
已知,则函数与函数在同一坐标系内的图像可能是
[     ]
A、
B、
C、
D、
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•天门模拟)已知命题:
①函数f(x)=
1
lgx
在(0,+∞)上是减函数;
②已知
a
=(3,4),
b
=(0,-1),则
a
b
方向上的投影为-4;
③函数f(x)=2sinxcos|x|的最小正周期为π;
④函数f(x)的定义域为R,则f(x)是奇函数的充要条件是f(0)=0;
⑤在平面上,到定点(2,1)的距离与到定直线3x+4y-10的距离相等的点的轨迹是抛物线.
其中,正确命题的序号是
②③
②③
.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上最小正周期为2的周期函数,且0<x≤2时,f(x)=x3-2x2-x+2,则函数y=f(x)的图象在区间[0,6]上与x轴交点的个数为(  )

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(湖南卷解析版) 题型:解答题

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式为奇函数,
1)求实数m的值;
2)求f(x)的反函数f-1(x);
3)若两个函数F(x)与G(x)在[p,q]上恒满足|F(x)-G(x)|>2,则称函数F(x)与G(x)在[p,q]上是分离的.试判断函数f(x)的反函数f-1(x)与g(x)=ax在[1,2]上是否分离?若分离,求出a的取值范围;若不分离,请说明理由.

查看答案和解析>>

同步练习册答案