精英家教网 > 高中数学 > 题目详情
(2013•延庆县一模)已知函数f(x)=-2a2lnx+
12
x2+ax
(a∈R).
(Ⅰ) 讨论函数f(x)的单调性;
(Ⅱ)当a<0时,求函数f(x)在区间[1,e]的最小值.
分析:(Ⅰ)求出函数f(x)的导数,令导数大于0求出函数的增区间,令导数小于0,求出函数的减区间
(Ⅱ)a<0时,用导数研究函数f(x)在[1,e]上的单调性确定出最小值,借助(Ⅰ)的结论,由于参数的范围对函数的单调性有影响,故对其分类讨论,
解答:解:函数f(x)的定义域为(0,+∞),…(1分)
(Ⅰ)f′(x)=
x2+ax-2a2
x
=
(x+2a)(x-a)
x
,…(4分)
(1)当a=0时,f'(x)=x>0,所以f(x)在定义域为(0,+∞)上单调递增; …(5分)

(2)当a>0时,令f'(x)=0,得x1=-2a(舍去),x2=a,
当x变化时,f'(x),f(x)的变化情况如下:
此时,f(x)在区间(0,a)单调递减,
在区间(a,+∞)上单调递增;          …(7分)

(3)当a<0时,令f'(x)=0,得x1=-2a,x2=a(舍去),
当x变化时,f'(x),f(x)的变化情况如下:
此时,f(x)在区间(0,-2a)单调递减,
在区间(-2a,+∞)上单调递增.…(9分)
(Ⅱ)由(Ⅰ)知当a<0时,f(x)在区间(0,-2a)单调递减,在区间(-2a,+∞)上单调递增.…(10分)
(1)当-2a≥e,即a≤-
e
2
时,f(x)在区间[1,e]单调递减,
所以,[f(x)]min=f(e)=-2a2+ea+
1
2
e2
;                     …(11分)
(2)当1<-2a<e,即-
e
2
<a<-
1
2
时,f(x)在区间(1,-2a)单调递减,
在区间(-2a,e)单调递增,所以[f(x)]min=f(-2a)=-2a2ln(-2a),…(12分)
(3)当-2a≤1,即-
1
2
≤a<0
时,f(x)在区间[1,e]单调递增,
所以[f(x)]min=f(1)=a+
1
2
.…(13分)
点评:本题考查用导数研究函数的单调性,解题的键是理解并掌握函数的导数的符号与函数的单调性的关系,此类题一般有两类题型,一类是利用导数符号得出单调性,一类是由单调性得出导数的符号,本题属于第一种类型.本题的第二小问是根据函数在闭区间上的最值,本题中由于参数的存在,导致导数的符号不定,故需要对参数的取值范围进行讨论,以确定函数在这个区间上的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•延庆县一模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5
日均浓度
0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类型 轻度污染 中度污染 重度污染 严重污染
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=
log4x, x>0
3x, x≤0
,则f[f(
1
16
)]
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥C-PAD的体积VC-PAD
(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案