分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:由z=3x+2y得$y=-\frac{3}{2}x+\frac{z}{2}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线$y=-\frac{3}{2}x+\frac{z}{2}$由图象可知当直线$y=-\frac{3}{2}x+\frac{z}{2}$经过点A时,直线$y=-\frac{3}{2}x+\frac{z}{2}$的截距最大,
此时z也最大,
由$\left\{\begin{array}{l}{2x+3y=10}\\{2x+y=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2)
将A(2,2)代入目标函数z=3x+2y,
得z=3×2+2×2=6+4=10.
故答案为:10.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{\sqrt{5}}$ | B. | $\sqrt{5}$+1 | C. | $\sqrt{5}$-1 | D. | 以上答案都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com