精英家教网 > 高中数学 > 题目详情
已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)经过点A(-
1
2
3
),且离心率为
3
2

(1)求椭圆C的标准方程;
(2)设E,F是椭圆C上的两点,线段EF的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.
考点:直线与圆锥曲线的综合问题,椭圆的标准方程,直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:(1)通过椭圆经过点A(-
1
2
3
)
,以及离心率,求出a2=4,b2=1,即可得到椭圆C的标准方程.
(2)设E、F、EF的中点Q的坐标分别为(x1,y1)、(x2,y2)、(x0,y0),利用|PE|=|PF|,P(t,0),求出t,通过E、F两点在椭圆C上,得到t=-
3(x1+x2)
2
=-3x0
,利用1<x0<1,求出实数t的取值范围.
解答: 解:(1)∵椭圆经过点A(-
1
2
3
)

3
a2
+
1
4b2
=1
…①…(1分)
e=
3
2

c
a
=
3
2
,∴
a2-b2
a2
=
3
4
,∴a2=4b2…②…(3分)
解①、②得,a2=4,b2=1…(5分)
∴椭圆C的标准方程为C:
y2
4
+x2=1
…(6分)
(2)设E、F、EF的中点Q的坐标分别为(x1,y1)、(x2,y2)、(x0,y0
∵线段EF的垂直平分线与x轴相交
∵EF不平行于y轴,即x1≠x2…(7分)
由已知,得|PE|=|PF|,且P(t,0)
(x1-t)2+y12
=
(x2-t)2+y22
…(8分)
化简,得  t=
y22-y12
2(x2-x1)
+
x1+x2
2
…(9分)
∵E、F两点在椭圆C上
y12=4-4x12y22=4-4x22…(10分)
t=-
3(x1+x2)
2
=-3x0
…(11分)
又∵-1<x0<1
∴-3<t<3…(13分)
即实数t的取值范围是(-3,3)…(14分)
点评:本题考查椭圆的方程的求法,直线与椭圆的综合应用,考查分析问题解决问题的能力.转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|cosx≥0,x∈R},B={y|y=4sinx+1,x∈R}
(1)化简集合A,B;
(2)若C={x|x>a},B⊆C,求实数a的范围;
(3)求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:(1)“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;(2)“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直”的充要条件;(3)y=
x2+4
x2+3
的最小值为2;(4)“
f(-x)
f(x)
=1”是“y=f(x)是偶函数”的充要条件,其中假命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|2x-1|+|1-x|.
(1)解不等式f(x)≤3x+4;
(2)对任意的x,不等式f(x)≥(m2-3m+3)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD中,A(-4,4),D(5,7),中心E在第一象限,且与y轴的距离为1个单位,求B,C点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=y的焦点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),函数y=g(x)的图象与函数f(x)的图象关于原点对称.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若a>1,x∈[0,1)时,总有F(x)=f(x)+g(x)≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x-
π
3
).
(1)用五点法画出函数f(x)在一个周期内的图形;
(2)写出函数f(x)的最小正周期,单调增区间;
(3)若函数y=af(x)+b在区间[0,
π
2
]上的值域是[0,1],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某随机变量X服从正态分布,其概率密度函数为f(x)=
1
e 
x2
8
,则X的期望μ=
 
,标准差σ=
 

查看答案和解析>>

同步练习册答案