精英家教网 > 高中数学 > 题目详情
若数列{an}满足
a
2
n+1
a
2
n
=p
(p为正常数),则称{an}为“等方比数列”.甲:数列{an}是等方比数列;乙:数列{an}是等比数列,则(  )
A、甲是乙的充分条件但不是必要条件
B、甲是乙的必要条件但不是充分条件
C、甲是乙的充要条件
D、甲既不是乙的充分条件也不是乙的必要条件
分析:由题意可知,乙?甲,但是
a
2
n+1
a
2
n+1
=q2?
an+1
an
=±q
,即甲成立,乙不一定成立,所以甲是乙的必要条件但不是充分条件.
解答:解:由等比数列的定义,若乙:{an}是等比数列,公比为q,即
an+1
an
=q?
a
2
n+1
a
2
n+1
=q2
则甲命题成立;反之,若甲:数列{an}是等方比数列,即
a
2
n+1
a
2
n+1
=q2?
an+1
an
=±q

即公比不一定为q,则命题乙不成立,
故选B
点评:本题是易错题.由
a
2
n+1
a
2
n
=p?
an+1
an
p
,得到的是两个等比数列,而命题乙是指一个等比数列,忽略等比数列的确定性,容易错选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关于数列的命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)若数列{an}满足an+12-
a
2
n
=d
(d为正常数,n∈N+),则称{an}为“等方差数列”.甲:数列{an}为等方差数列;乙:数列{an}为等差数列,则甲是乙的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•三明模拟)若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于
1
m
,那么正数m的最小取值是(  )

查看答案和解析>>

科目:高中数学 来源:2013年福建省三明市高三质量检查数学试卷(解析版) 题型:选择题

若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于,那么正数m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

科目:高中数学 来源:2012年福建省三明市普通高中毕业班质量检查数学试卷(理科)(解析版) 题型:选择题

若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于,那么正数m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步练习册答案