精英家教网 > 高中数学 > 题目详情
设椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)经过点P(1,
2
)
,其离心率e=
2
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l:y=
2
x+m
交椭圆于A、B两点,且△PAB的面积为
2
,求m的值.
(Ⅰ)由已知,得
(
2
)2
a2
+
12
b2
=1
a2=b2+c2
c
a
=
2
2
,解得
a=2
c=
2
b=
2

故所求椭圆M的方程为
y2
4
+
x2
2
=1

(Ⅱ)由
y=
2
x+m
x2
2
+
y2
4
=1
,得4x2+2
2
mx+m2-4=0

由△=(2
2
m)2-16(m2-4)>0
,解得-2
2
<m<2
2

设A(x1,y1),B(x2,y2),所以x1+x2=-
2
2
m,x1x2=
m2-4
4

所以|AB|=
1+2
|x1-x2|=
3
(x1+x2)2-4x1x2
=
3
1
2
m2-m2+4
=
3
4-
m2
2

又P到AB的距离为d=
|m|
3

则S△ABC=
1
2
|AB|•d=
1
2
3
4-
m2
2
|m|
3
=
1
2
m2(4-
m2
2
)
=
1
2
2
m2(8-m2)

所以
1
2
2
m2(8-m2)
=
2
,m4-8m2+16=0,解得m=±2,
显然±2∈(-2
2
,2
2
)
,故m=±2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知定点A(2,0),它与抛物线y2=x上的动点P连线的中点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为
3
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>o)过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆于C不同的两点A,B.
(1)求椭圆的C方程.
(2)证明:若直线MA,MB的斜率分别为k1、k2,求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,且过点(
3
1
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a、b是非零实数,则方程bx2+ay2=ab及ax+by=0所表示的图形可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点M(2,0)、N(-2,0),平面上动点P满足由|
MN
|•|
MP
|+
MN
MP
=0

(1)求动点P的轨迹C的方程.
(2)是否存在实数m使直线x+my-4=0(m∈R)与曲线C交于A、B两点,且OA⊥OB?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点F是双曲线C:x2-y2=2的左焦点,直线l与双曲线C交于A、B两点,
(1)若直线l过点P(1,2),且
OA
+
OB
=2
OP
,求直线l的方程.
(2)若直线l过点F且与双曲线的左右两支分别交于A、B两点,设
FB
FA
,当λ∈[6,+∞)时,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A.5B.
5
2
C.
3
2
D.
17
8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点.
(Ⅰ)若点P为双曲线与圆x2+y2=a2+b2的一个交点,且满足|PF1|=2|PF2|,求此双曲线的离心率;
(Ⅱ)设双曲线的渐近线方程为y=±x,F2到渐近线的距离是
2
,过F2的直线交双曲线于A,B两点,且以AB为直径的圆与y轴相切,求线段AB的长.

查看答案和解析>>

同步练习册答案