.设
是公比为
的等比数列,
,令
,若数列
有连续四项在集合
中,则
★ .
![]()
解析考点:等比数列的性质.
分析:根据bn=an+1可知 an=bn-1,依据{bn}有连续四项在{-53,-23,19,37,82}中,则可推知则{an}有连续四项在{-54,-24,18,36,81}中,按绝对值的顺序排列上述数值,可求{an}中连续的四项,求得q
解:{bn}有连续四项在{-53,-23,19,37,82}中且bn=an+1 an=bn-1
则{an}有连续四项在{-54,-24,18,36,81}中
∵{an}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项
∴等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值18,-24,36,-54,81}
相邻两项相除-
=-
,-
=-
,-
=-
,
=-![]()
则可得,-24,36,-54,81是{an}中连续的四项,此时q=-![]()
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
设
个不全相等的正数
依次围成一个圆圈.
(Ⅰ)若
,且
是公差为
的等差数列,而
是公比为
的等比数列;数列
的前
项和
满足:
,求通项
;
(Ⅱ)若每个数
是其左右相邻两数平方的等比中项,求证:
;
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
设
个不全相等的正数
依次围成一个圆圈。
(Ⅰ)若
,且
是公差为
的等差数列,而
是公比为
的等比数列;数列
的前
项和
满足:
,求通项
;
(Ⅱ)若每个数
是其左右相邻两数平方的等比中项,求证:
。
查看答案和解析>>
科目:高中数学 来源: 题型:
设
个不全相等的正数
依次围成一个圆圈。
(Ⅰ)若
,且
是公差为
的等差数列,而
是公比为
的等比数列;数列
的前
项和
满足:
,求通项
;
(Ⅱ)若每个数
是其左右相邻两数平方的等比中项,求证:
。
查看答案和解析>>
科目:高中数学 来源:2009高考真题汇编3-数列 题型:解答题
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
设
个不全相等的正数
依次围成一个圆圈。
(Ⅰ)若
,且
是公差为
的等差数列,而
是公比为
的等比数列;数列
的前
项和
满足:
,求通项
;
(Ⅱ)若每个数
是其左右相邻两数平方的等比中项,求证:
。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com