精英家教网 > 高中数学 > 题目详情
19.已知f(x)=$\left\{\begin{array}{l}{1,}&{x≥0}\\{-1,}&{x<0}\end{array}\right.$,则不等式x+(x+2)•f(x+2)≤5的解集是(  )
A.(-$∞,\frac{3}{2}$]B.(-$∞,-\frac{3}{2}$]C.($\frac{3}{2},+∞$)D.(-$\frac{3}{2},\frac{3}{2}$]

分析 把要求的不等式等价转化为与之等价的2个不等式组,求得每个不等式组的解集,再取并集,即得所求.

解答 解:根据f(x)=$\left\{\begin{array}{l}{1,}&{x≥0}\\{-1,}&{x<0}\end{array}\right.$,由不等式x+(x+2)•f(x+2)≤5,
可得$\left\{\begin{array}{l}{x+2≥0}\\{x+(x+2)≤5}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{x+2<0}\\{x+(x+2)•(-1)≤5}\end{array}\right.$②.
解①求得-2≤x≤$\frac{3}{2}$,解②求得x<-2,
综上可得,不等式的解集为(-∞,$\frac{3}{2}$],
故选:A.

点评 本题主要考查分段函数的应用,其它不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在等差数列{an}中,已知a3=10,a9=28,则a12的值为37.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知变量x、y满足$\left\{{\begin{array}{l}{x-y+5≥0}\\{x≤3}\\{x+y+k≥0}\end{array}}\right.$,且z=2x+4y的最小值为-6,则常数k=(  )
A.2B.0C.3$\sqrt{10}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}满足an=2n$|{cos\frac{nπ}{2}}|$,其前n项的和Sn=340,则n的值等于8或9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数$y=2x+\sqrt{1-2x}$的值域为(-∞,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=ln|x-1|+lg$\frac{x+1}{3-x}$的定义域是{x|-1<x<1或1<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(平行班做)
(1)已知sinα-sinβ=-$\frac{1}{3}$,cosα-csoβ=$\frac{1}{2}$,求cos(α-β)=$\frac{59}{72}$.(写出计算过程)
(2)已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,求tan(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线x2=2py(p>0)以椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的上顶点S为焦点,抛物线的过焦点且垂直于其对称轴的弦与椭圆长轴的长度相等.
(1)求出抛物线与椭圆的方程;
(2)设抛物线与椭圆交于A,B,在抛物线弧$\widehat{AB}$上的任一点M处作抛物线的切线l.
①求证:S关于切线l的对称点S′总在抛物线的准线上;
②若T(不是S)是椭圆上的点,且点T到切线l的距离与点S到切线l的距离相等,试问这样的点T有几个?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC中,A,B,C所对边长分别为a,b,c,且|a-b|=8,c=10,记O为AB的中点,则∠BOC的取值范围是(0,arctan$\frac{3}{4}$)∪(π-arctan$\frac{3}{4}$,π).

查看答案和解析>>

同步练习册答案