精英家教网 > 高中数学 > 题目详情
已知数列{an}各项为正数,前n项和
(1)求数列{an}的通项公式;
(2)若数列{bn}满足,求数列{bn}的通项公式;
(3)在(2)的条件下,令,数列{cn}前n项和为Tn,求证:Tn<2.
【答案】分析:(1)已知前n项和,当n≥2时,利用,了点数列{an}是以1为首项,1为公差的等差数列,从而可求数列{an}的通项公式;
(2)由,再用叠加法求数列{bn}的通项公式;
(3),当n≥2时,.从而可求数列{cn}前n项和为Tn,即可证得结论.
解答:解:(1)当n=1时,
,又a1>0,故a1=1.(1分)
当n≥2时,,(2分)
化简得(an+an-1)(an-an-1-1)=0,由于an>0,
∴an-an-1=1,故数列{an}是以1为首项,1为公差的等差数列,
∴an=n.(4分)
(2)由
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+3+…+3n-1=.(8分)
(3),(9分)
当n=1时,
当n≥2时,.(10分)
∴Tn=c1+c2+…+cn==.(12分)
点评:本题重点考查等差数列的通项,考查叠加法求和,考查放缩法的运用,解题的关键是叠加法求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p为大于1的常数),则an=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,观察下面的程序框图
(1)若d≠0,分别写出当k=2,k=3时s的表达式.
(2)当输入a1=d=2,k=100 时,求s的值( 其中2的高次方不用算出).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•资阳一模)已知数列{an}各项为正数,前n项和Sn=
1
2
an(an+1)

(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+3an,求数列{bn}的通项公式;
(3)在(2)的条件下,令cn=
3an
2
b
2
n
,数列{cn}前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p≠±1的常数),记f(n)=
1+
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an
2nSn

(Ⅰ)求an
(Ⅱ)求
lim
n→∞
f(n+1)
f(n)

(Ⅲ)当p>1时,设bn=
p+1
2p
-
f(n+1)
f(n)
,求数列{pk+1bkbk+1}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,满足n
a
2
n
+(1-n2)a n-n=0

(1)计算a1,a2,并求数列{an}的通项公式;
(2)求数列{
an
2n
}
的前n项和Sn

查看答案和解析>>

同步练习册答案