精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线与直线的夹角为,求的取值范围.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ)由AB直线与抛物线交于两点可知,直线AB不与x轴垂直,故可设,代入

整理得:,方程①的判别式,故时均满足题目要求.记交点坐标为,则为方程①的两根,故由韦达定理可知,.将抛物线方程转化为,则,故A点处的切线方程为,整理得

同理可得,B点处的切线方程为,记两条切线的交点

联立两条切线的方程,解得点坐标为

故点P的轨迹方程为

(Ⅱ)当时,,此时直线PQ即为y轴,与直线AB的夹角为

时,记直线PQ的斜率为,则,又由于直线AB的斜率为,且已知直线AB与直线PQ所夹角

综上所述,得取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,其中左焦点F(﹣2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证: 平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a2x+ (a,b,c为常数,且a>0,c>0).
(1)当a=1,b=0时,求证:|f(x)|≥2c;
(2)当b=1时,如果对任意的x>1都有f(x)>a恒成立,求证:a+2c>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017重庆二诊】已知函数,设关于的方程个不同的实数解,则的所有可能的值为( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求圆C的标准方程和直线l的普通方程;
(2)若直线l与圆C恒有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记等比数列{an}前n项和为Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=3,bn+1﹣3bn=3an , 求数列{bn}的前n项和Bn
(3)删除数列{an}中的第3项,第6项,第9项,…,第3n项,余下的项按原来的顺序组成一个新数列,记为{cn},{cn}的前n项和为Tn , 若对任意n∈N* , 都有 >a,试求实数a的最大值.

查看答案和解析>>

同步练习册答案