精英家教网 > 高中数学 > 题目详情
设实数x,y满足条件
x+y-2≥0
y≤x-1
y≥0
,则z=
y
x
的取值范围是(  )
A.[0,+∞)B.[0,
3
2
]
C.[0,1)D.[0,1]
作出不等式组对应的平面区域如图:则z的几何意义为区域内的点P(x,y),与原点的斜率的取值范围.
由图象可知过原点的直线和直线y=x-1平行时,直线y=zx的斜率最大为1,但取不到1,
当P位于x轴上AC时,直线y=zx的斜率最小为0,
∴z=
y
x
的取值范围是0≤z<1,
故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)定义在R上的函数,当时,,且
对任意的∈R,有.
(1)求证:
(2)求证:是R上的增函数;
(3)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图像与f(x)的图像重合,设a>b>0,给出下列不等式:
f(b)-f(-a)>g(a)-g(-b)   ②f(b)-f(-a)<g(a)-g(-b
f(a)-f(-b)>g(b)-g(-a)   ④f(a)-f(-b)<g(b)-g(-a)
其中成立的是(    )
A.①与④B.②与③C.①与③D.②与④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

具有性质“对任意x,y∈R,满足f(x+y)=f(x)+f(y)”的函数f(x)是(  )
A.f(x)=πxB.f(x)=log0.6xC.f(x)=5xD.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=
x2-6x+6,x≥0
3x+4,x<0
,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(  )
A.(
11
3
,6
]
B.(
20
3
26
3
C.(
20
3
26
3
]
D.(
11
3
,6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-2.
(1)求f(0);
(2)证明f(x)是奇函数;
(3)试问在x∈[-3,3]时f(x)是否有最大、最小值?如果有,请求出来,如果没有,说明理由;
(4)解不等式
1
2
f(x2)-f(x)>
1
2
f(3x)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=|x-1|-|x+2|.
(1)用分段函数的形式表示该函数;
(2)在右边所给的坐标第中画出该函数的图象;
(3)写出该函数的定义域、值域、奇偶性、单调区间(不要求证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义域是(0,+∞)的函数f(x)满足;
(1)对任意x∈(0,+∞),恒有f(3x)=3f(x)成立;
(2)当x∈(1,3]时,f(x)=3-x.给出下列结论:
①对任意m∈Z,有f(3m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(3n+1)=0;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“?k∈Z,使得(a,b)⊆(3k,3k+1).”
其中正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最大值为_________

查看答案和解析>>

同步练习册答案