精英家教网 > 高中数学 > 题目详情
函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)
的图象上一个最高点的坐标为(
π
12
,3)
,与之相邻的一个最低点的坐标为(
12
,-1)

(Ⅰ)求f(x)的表达式;
(Ⅱ)求f(x)在x=
π
6
处的切线方程.
(Ⅰ)依题意,得
T
2
=
12
-
π
12
=
π
2
,所以T=π,
ω=
T
=2
…(1分)
又∵
A+B=3
-A+B=-1
,∴解之得
A=2
B=1
…(3分)
再把(
π
12
,3)
代入f(x)=2sin(2x+φ)+1,
可得sin(
π
6
+?)=1
,所以
π
6
+?=2kπ+
π
2
(k∈Z),
所以?=2kπ+
π
3

因为|?|<
π
2
,所以取k=0得?=
π
3
…(5分)
综上所述,f(x)的表达式为:f(x)=2sin(2x+
π
3
)+1
…(6分)
(Ⅱ)因为f(x)的导数为f′(x)=4cos(2x+
π
3
)
…(8分)
∴所求切线的斜率k=f′(
π
6
)=4cos(2×
π
6
+
π
3
)=4cos
3
=-2
…(9分)
f(
π
6
)=2sin(2×
π
6
+
π
3
)+1=2sin
3
+1=
3
+1
…(10分)
∴f(x)在x=
π
6
处的切线方程为y-(
3
+1)=-2(x-
π
6
)

化简,得6x+3y-3
3
-3-π=0
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<
π2
,x∈R)
的图象的一部分如图所示,则函数f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网函数f(x)=Asin(ωx+?) (A>0,ω>0,|?|<
π
2
)
部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)设g(x)=f(x)-cos2x,求函数g(x)在区间x∈[0,
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+?),x∈R,(A>0.ω>0,0<?<
π
2
)
的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2)

(1)求f(x)的解析式;
(2)设A,B,C是△ABC的三个内角,若cosB=
1
3
,f(
C
2
)=
3
,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-
π
6
)
(A>0,ω>0)的最大值为2,其最小正周期为π.
(1)求函数f(x)的解析式;
(2)设α∈(0,
π
2
)
,则f(
α
2
)=
2
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x+
π
12
)
,判断函数g(x)的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案