分析 (Ⅰ)由周期求得ω,由最低点的坐标结合五点法作图求得A及φ的值,可得函数f(x)的解析式.
(Ⅱ)由条件利用正弦函数的单调性,求得f(x)的单调递增区间.
(Ⅲ)当x∈[$\frac{π}{12}$,$\frac{π}{2}$],利用正弦函数的定义域和值域,求得f(x)的值域.
解答 解:(Ⅰ)由图象与x轴相邻两个交点间的距离为$\frac{π}{2}$,$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{2}$,∴ω=2,
再根据图象上一个最低点为M($\frac{2π}{3}$,-2),可得A=2,2×$\frac{2π}{3}$+φ=$\frac{3π}{2}$,φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$).
(Ⅱ)令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z;
(Ⅲ)当x∈[$\frac{π}{12}$,$\frac{π}{2}$]时,$\frac{π}{3}$≤2x+$\frac{π}{6}$≤$\frac{7π}{6}$,∴sin(2x+$\frac{π}{6}$)∈[-1,2],故函数的值域为[-1,2].
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性,正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com