精英家教网 > 高中数学 > 题目详情
在△ABC中,化简bcosC+ccosB=________________.

解析:bcosC+ccosB=b·+c·=+=a.

答案:a

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,A、B、C的对边分别为a、b、c,
(Ⅰ)化简:bcosC+ccosB;
(Ⅱ)求证:
cos2A
a2
-
cos2B
b2
=
1
a2
-
1
b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,1)
,向量
n
=(cosx,
3
sin2x)
函数f(x)=
m
n
+
2010
1+cot2x
+
2010
1+tan2x

(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为
3
2
,求
1005(a+c)
sinA+sinC
的值.

查看答案和解析>>

科目:高中数学 来源:四川省月考题 题型:解答题

已知向量,向量,函数f(x)=++.
(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市高三三月调考数学试卷(理科)(解析版) 题型:解答题

已知向量,向量
(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源:0117 期末题 题型:解答题

已知向量=(2cosx,1),向量=(cosx,sin2x),函数f(x)=·+2010。
(1)化简f(x)的解析式,并求函数f(x)的单调递减区间;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,已知f(A)=2012,b=1,△ABC的面积为,求的值。

查看答案和解析>>

同步练习册答案