精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式+cx+d(a,c,d∈R)满足f(0)=0,f'(1)=0,且f'(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若数学公式,解不等式f'(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f'(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

解:(1)∵f(0)=0,∴d=0

恒成立
显然a=0时,上式不能恒成立∴是二次函数
由于对一切x∈R,都有f'(x)≥0,于是由二次函数的性质可得

(2)∵


,当
(3)∵,∴

该函数图象开口向上,且对称轴为x=2m+1.
假设存在实数m使函数区间[m.m+2]上有最小值-5.
①当m<-1时,2m+1<m,函数g(x)在区间[m,n+2]上是递增的.

解得,∴舍去
②当-1≤m<1时,m≤2m+1<m+2,函数g(x)在区间[m,2m+1]上是递减的,
而在区间[2m+1,m+2]上是递增的,∴g(2m+1)=-5.

解得,均应舍去
③当m≥1时,2m+1≥m+2,函数g(x)在区间[m,m+2]上递减的∴g(m+2)=-5

解得应舍去.
综上可得,当时,
函数g(x)=f'(x)-mx在区间[m,m+2]上有最小值-5.
分析:(1)待定系数法求函数解析式,由f(0)=0,f'(1)=0,且f'(x)≥0在R上恒成立列出三个方程,解出a、b、c
(2)一元二次不等式解法,注意根之间比较,考查分类讨论思想
(3)考查二次函数最值问题,考查分类讨论思想,对m进行讨论,看对称轴与区间的关系.
点评:本题考查导数的综合运用,具体包含导数的计算、恒成立问题、不等式的解法、待定系数法求函数解析式、二次函数最值问题,分类讨论思想,对学生有一定的能力要求,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案