精英家教网 > 高中数学 > 题目详情
求函数y=x+
2x-1
的值域
 
分析:先对根式整体换元(注意求新变量的取值范围),把原问题转化为一个二次函数在闭区间上求值域的问题即可.
解答:解:令t=
2x-1
,(t≥0),
则x=
t2+1
2
,问题转化为求函数f(t)=
t2+1
2
+t
=
(t+1)2
2
在t≥0上的值域问题,
因为t≥0时,函数f(t)有最小值f(0)=
1
2
.无最大值,故其值域为[
1
2
,+∞).
即原函数的值域为[
1
2
,+∞).
故答案为:[
1
2
,+∞)
点评:本题主要考查用换元法求值域以及二次函数在闭区间上求值域问题.换元法求值域适合于函数解析式中带根式且根式内外均为一次形式的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知a,b是正常数,a≠b,x,y∈(0,+∞),求证:
a2
x
+
b2
y
(a+b)2
x+y
,指出等号成立的条件;
(2)利用(1)的结论求函数f(x)=
2
x
+
9
1-2x
x∈(0,
1
2
)
)的最小值,指出取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

请先阅读:
设平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夹角为θ,
因为
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)试求函数y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

求函数y=x+
2x-1
的值域______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

请先阅读:
设平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夹角为θ,
因为
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a21
+
a22
×
b21
+
b22

当且仅当θ=0时,等号成立.
(I)利用上述想法(或其他方法),结合空间向量,证明:对于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a21
+
a22
+
a23
)(
b21
+
b22
+
b23
)
成立;
(II)试求函数y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

同步练习册答案