精英家教网 > 高中数学 > 题目详情
(2013•福建)将函数f(x)=sin(2x+θ)(-
π
2
<θ<
π
2
)的图象向右平移φ({φ>1})个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,
3
2
),则φ的值可以是(  )
分析:求出平移后的函数解析式,利用两个函数都经过P(0,
3
2
),解出θ,然后求出φ即可.
解答:解:函数f(x)=sin(2x+θ)(-
π
2
<θ<
π
2
)
向右平移φ个单位,得到g(x)=sin(2x+θ-2φ),
因为两个函数都经过P(0,
3
2
),所以sinθ=
3
2
  (-
π
2
<θ<
π
2
)
θ=
π
3

所以g(x)=sin(2x+
π
3
-2φ),sin(
π
3
-2φ)=
3
2
,φ>1,所以
π
3
-2φ=2kπ+
π
3
,φ=-kπ,与选项不符舍去,
π
3
-2φ=2kπ+
3
,k∈Z,当k=-1时,φ=
6

故选B.
点评:本题考查函数图象的平移,函数值的求法,考查分析问题解决问题的能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•福建)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
P(x2≥k) 0.100 0.050 0.010 0.001
k 2.706 3.841 6.635 10.828

(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(II)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:x2=
n(n11n22-n12n21)
n1*n2*n*1n*2
(注:此公式也可以写成k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)如图,在正方形OABC中,O为坐标原点,点A的坐标为(10,0),点C的坐标为(0,10),分别将线段OA和AB十等分,分点分别记为A1,A2,…,A9和B1,B2,…,B9,连接OBi,过Ai作x轴的垂线与OBi,交于点
P
 
i
(i∈N*,1≤i≤9)

(1)求证:点
P
 
i
(i∈N*,1≤i≤9)
都在同一条抛物线上,并求抛物线E的方程;
(2)过点C作直线l与抛物线E交于不同的两点M,N,若△OCM与△OCN的面积之比为4:1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求证:CD⊥平面ADD1A1
(2)若直线AA1与平面AB1C所成角的正弦值为
67
,求k的值
(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(
π
4
,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个
π
2
单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈(
π
6
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.

查看答案和解析>>

同步练习册答案