精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(1,-1),若$\overrightarrow c$=$-\frac{3}{2}\overrightarrow a$+$\frac{1}{2}\overrightarrow b$,则$\overrightarrow c$=(  )
A.(-1,-2)B.(1,2)C.(-1,2)D.(1,-2)

分析 根据向量的运算求出向量C即可.

解答 解:∵向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(1,-1),
∴$\overrightarrow c$=$-\frac{3}{2}\overrightarrow a$+$\frac{1}{2}\overrightarrow b$=-$\frac{3}{2}$(1,1)+$\frac{1}{2}$(1,-1)=(-1,-2),
则$\overrightarrow c$=(-1,-2),
故选:A.

点评 本题考查了平面向量的坐标运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若角α的余弦线长度为0,则它的正弦线的长度为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,若an=$\frac{1}{\sqrt{n}+\sqrt{n-1}}$(n∈N*),则S2009的值为$\sqrt{2009}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,动物园要围成四间相同面积的长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成,设每间虎笼的长为xm,宽为ym,现有36m长的钢筋网材料,为使每间虎笼面积最大,则$\frac{x}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设向量$\overrightarrow{e_1}$和$\overrightarrow{e_2}$不共线.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow{BC}$=2$\overrightarrow{e_1}$+8$\overrightarrow{e_2}$,$\overrightarrow{CD}$=3($\overrightarrow{e_1}$-$\overrightarrow{e_2}$),求证:A、B、D三点共线;
(2)若|$\overrightarrow{e_1}$|=2,|$\overrightarrow{e_2}$|=3,$\overrightarrow{e_1}$和$\overrightarrow{e_2}$的夹角为60°,试确定k,使$k\overrightarrow{e_1}$+$\overrightarrow{e_2}$和$\overrightarrow{e_1}$+k$\overrightarrow{e_2}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对任意的向量$\overrightarrow a$,$\overrightarrow b$和实数x∈[0,1],如果满足$|{\overrightarrow a}|=2|{\overrightarrow a-\overrightarrow b}|$,都有$|{\overrightarrow a-x\overrightarrow b}|≤λ|{\overrightarrow a-\overrightarrow b}|$成立,那么实数λ的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的面积是3,角A,B.C所对边长分别为a,b,c,cosA=$\frac{4}{5}$.
(Ⅰ)求$\overrightarrow{AB}•\overrightarrow{AC}$;
(Ⅱ)若b=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算:(${lg\frac{1}{25}$-lg4)÷${100^{-\frac{1}{2}}}$的值为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知Ω是由曲线y=$\sqrt{4-{x}^{2}}$与x轴围成的封闭区域,若将质点P(x,y)投入区域Ω中,则x>$\sqrt{3}$y的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案