【题目】在直角坐标系xOy上取两个定点 再取两个动点,,且.
(Ⅰ)求直线与交点M的轨迹C的方程;
(Ⅱ)过的直线与轨迹C交于P,Q,过P作轴且与轨迹C交于另一点N,F为轨迹C的右焦点,若,求证:.
科目:高中数学 来源: 题型:
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运
会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 80 | ||
年龄大于50岁 | 10 | ||
合计 | 70 | 100 |
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知函数y=lg(x2+2x+a)的定义域为R,求实数a的取值范围;
(2)已知函数f(x)=lg[(a2-1)x2+(2a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题P:函数是增函数,命题Q:
(1)写出命题Q的否命题,并求出实数的取值范围,使得命题为真命题;
(2)如果是真命题,是假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的导函数的图象如图所示,给出下列判断:
①函数在区间内单调递增;②函数在区间内单调递减;③函数在区间内单调递增;④当时,函数有极小值;⑤当时,函数有极大值.则上述判断中正确的是( )
A. ①② B. ③
C. ②③ D. ③④⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设首项为1的正项数列{an}的前n项和为Sn,且Sn+1-3Sn=1.
(1) 求证:数列{an}为等比数列;
(2) 数列{an}是否存在一项ak,使得ak恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【湖南省2017届高三长郡中学、衡阳八中等十三校重点中学第一次联考数学(理)】
已知函数.
(1)当时,试求函数图像过点的切线方程;
(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;
(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com