精英家教网 > 高中数学 > 题目详情
已知f(n+1)=f(n)-
14
(n∈N*)且f(2)=2,则f(101)=
 
分析:根据所给的函数式可以看出这是一个等差数列,公差和第二项的值都是已知的,因此可以写出要求的结果是第二项加上99倍的公差.
解答:解:∵f(n+1)=f(n)-
1
4
(n∈N*
∴f(n+1)-f(n)=-
1
4

f(2)=2,
∴f(n)表示以2为首项,以
1
4
为公差的等差数列,
f(101)=2-(101-2)×
1
4
=-
91
4

故答案为:-
91
4
点评:本题的表现形式是一个函数,实际上是一个数列问题,解题的关键是看清题目中连续两项之间的关系是差是定值,注意所给的一项是第二项,不要错用成第一项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.
(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在正整数集上的函数f(x)满足条件:f(1)=2,f(2)=-2,f(n+2)=f(n+1)-f(n),则f(2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知fn+1)=fn)-n∈N*)且f(2)=2,则f(101)=_______.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省部分中学高一(下)期中数学试卷(解析版) 题型:解答题

在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.
(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.
(2)求f(x)的解析式.

查看答案和解析>>

同步练习册答案