精英家教网 > 高中数学 > 题目详情
已知圆心在直线2x+y=0上,且过点A(2,-1),与直线x-y-1=0相切,求圆的方程。
圆的方程为:(x-1)2+(y+2)2=2或(x-9)2+(y+18)2=338
由圆心在直线2x+y=0上,设圆心坐标为(x0,-2x0)∵过点A(2,-1)且与直线x-y-1=0相切,∴,解得x0=1或x0=9当x0=1时,半径r=,当x0=9时,半径r=,
∴所求圆的方程为:(x-1)2+(y+2)2=2或(x-9)2+(y+18)2=338
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知与曲线C: x2+y2-2x-2y+1=0相切的直线l与x轴、y轴的正半轴交于两点A、B,O为原点,|OA|=a,|OB|=b(a>2,b>2)
(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)="2" ;
(2)求ΔAOB面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题





查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



(1)若不经过坐标原点的直线与圆C相切,且直线在两坐标轴上的截距相等,求直线的方程;
(2)设点P在圆C上,求点P到直线距离的最大值与最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线被圆所截得的弦长为              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知半径为1的定圆⊙P的圆心P到定直线的距离为2,Q是上一动点,⊙Q与⊙P相外切,⊙Q交于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值。求∠MAN的度数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

m为何值时,直线x+2y-3=0与圆x2+y2+x-6y+m=0相离?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线x+y=m与圆(φ为参数,m>0)相切,则m
A.B.2
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线x+y=M与圆x2+y2=m(m>0)相切,则m=(  )
A.B.C.D.2

查看答案和解析>>

同步练习册答案