精英家教网 > 高中数学 > 题目详情
2.y2=-16x上一点P到x轴距离为12,则点P到焦点距离为13.

分析 先把点P的纵坐标代入抛物线方程求得点P的横坐标,进而根据抛物线的定义求得答案.

解答 解:依题意可知点P的纵坐标y=±12,代入抛物线方程求得x=-9
抛物线的准线为x=4,
根据抛物线的定义可知点P与焦点F间的距离9+4=13
故答案为:13.

点评 本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:
[10.75,10.85)3;[10.85,10.95)9;[10.95,11.05)13;
[11.05,11.15)16;[11.15,11.25)26;[11.25,11.35)20;
[11.35,11.45)7;[11.45,11.55)4;[11.55,11.65)2;
估计数据落在[10.95,11.35)范围内的频率为(  )
A..035B.0.5C.0.75D.0.95

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)=\frac{2}{{{3^x}+1}}+m$,m是实常数,
(1)当m=1时,写出函数f(x)的值域;
(2)当m=0时,判断函数f(x)的奇偶性,并给出证明;
(3)若f(x)是奇函数,不等式f(f(x))+f(a)<0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$,弦AB的中点是M(3,1).
(1)求过点M且垂直于长轴的弦长;
(2)求弦AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图:AB是抛物线y2=2px(p>0)过焦点F的一条弦,设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),相应的准线为l.
证明:
(1)以AB为直径的圆必与准线l相切;
(2)|AB|=2(x0+$\frac{p}{2}$)(焦点弦长与中点关系);
(3)|AB|=x1+x2+p;
(4)x1•x2=$\frac{{p}^{2}}{4}$,y1•y2=-p2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在长方形ABCD-A1B1C1D1中,E,F,G分别是AA1,CC1,DD1的中点,若∠EBF=120°,则∠AGC=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知E,F分别是棱长为a的正方体ABCD-A1B1C1D1中的棱BC和C1D1的中点,求:
(1)线段EF的长;
(2)线段EF与平面A1B1C1D1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个程序框图,则输出的S的值是(  )
A.14B.15C.31D.41

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求与两平行线l1:3x+4y-10=0和l2:3x+4y-12=0距离相等的直线l的方程.

查看答案和解析>>

同步练习册答案