精英家教网 > 高中数学 > 题目详情

函数f(x)=|4x-x2|-a恰有三个零点,则a的值为


  1. A.
    0
  2. B.
    2
  3. C.
    4
  4. D.
    不存在
C
分析:函数f(x)=|4x-x2|-a恰有三个零点,即函数y=|4x-x2|的图象与y=a的图象有三个交点,作出f(x)=|4x-x2|的图象即可求得答案.
解答:由含绝对值函数图象的作法可知,函数y=|4x-x2|的图象为y=4x-x2图象在x轴上方的不变,x轴下方的沿x轴翻折,
∴y=|4x-x2|的图象与x轴有两个交点,为(0,0)和(4,0),原来的顶点经过翻折变为(2,4),
如下图所示:

函数f(x)=|4x-x2|-a有三个零点,即函数y=|4x-x2|的图象与y=a的图象有三个交点,
由图象可知,当a=4时,f(x)=|4x-x2|的图象与y=a的图象恰有3个交点,此时函数恰有3个零点.
故选C.
点评:本题考查了含绝对值的函数图象的作法,为图象题,解题时须认真观察,找到突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=4x-k(x2+2clnx)(c>1,k∈R)有一个极值点是1.
(I)讨论函数f(x)的单调性;
(II)当c>1时,记f(x)的极大值为M(c),极小值为N(c),对于t∈R,问函数h(c)=M(c)-
1
2
N(c)-
2c+t
c+1
是否存在零点?若存在,请确定零点个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=4x+cosx,{an}是公差为
π
8
的等差数列,f(a1)+f(a2)+…+f(a5)=10π,则[f(a3)]2-a1a5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
-x2+4x-3
的定义域为M,函数f(x)=4x+a•2x+1+2(x∈M).
(1)当a=1时,求函数f(x)的值域;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x∈R|-1≤log
13
x≤0},函数f(x)=4x-3m-2x+1+5(其中x∈A,m∈R)
(1)求函数f(x)的定义域;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)函数f(x)=4x的反函数f-1(x)=
 

查看答案和解析>>

同步练习册答案