精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,若|AB|=12,那么x1+x2等于(  )
分析:由题意,抛物线的焦点坐标F(1,0),准线方程为x=-1.根据抛物线的定义,证出|AF|+|BF|=x1+x2+2,结合题中数据即可求出x1+x2的值.
解答:解:根据题意,得
抛物线y2=4x的焦点坐标F(1,0),准线方程为x=-1
∴由抛物线的定义,得|AF|=x1+1且|BF|=x2+1
因此|AF|+|BF|=x1+x2+2=12,可得x1+x2=10
故选:B
点评:本题给出抛物线的焦点弦的长度,求端点横坐标的和.着重考查了抛物线的定义与标准方程的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

倾斜角为
π
4
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F引两条互相垂直的直线AB、CD交抛物线于A、B、C、D四点.
(1)求当|AB|+|CD|取最小值时直线AB、CD的倾斜角的大小
(2)求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,A、B两点在准线l上的射影分别为M.N,则∠MFN=(  )

查看答案和解析>>

同步练习册答案