【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且 .
(1)证明:sinAsinB=sinC;
(2)若 ,求tanB.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的序号是__________________.(写出所有正确的序号)
①正切函数在定义域内是增函数;
②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;
③若,则三点共线;④函数的最小值为;
⑤函数在上是增函数,则的取值范围是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,已知a1=2,a2为整数,且a3∈[3,5].
(1)求{an}的通项公式;
(2)设,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(22x+1)+mx的图象经过点 .
(Ⅰ)求m值并判断的奇偶性;
(Ⅱ)设g(x)=log4(2x+x+a)f(x),若关于x的方程f(x)=g(x)在x∈[-2,2]上有且只有一个解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等边三角形ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,给出以下四个命题:①AC∥平面A′DF;②平面A′GF⊥平面BCED;③动点A′在平面ABC上的射影在线段AF上;④异面直线A′E与BD不可能垂直.其中正确命题的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com