精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且
(1)证明:sinAsinB=sinC;
(2)若 ,求tanB.

【答案】
(1)

证明:在△ABC中,∵

∴由正弦定理得:

= =1,

∵sin(A+B)=sinC.

∴整理可得:sinAsinB=sinC


(2)

解: ,由余弦定理可得cosA=

sinA= =

+ = =1, =

tanB=4


【解析】(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明.(2)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可;本题主要考查了正弦定理,余弦定理,两角和的正弦函数公式,三角形内角和定理,三角形面积公式的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的零点, 图像的对称轴,且 单调,则 的最大值为(  )
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的序号是__________________.(写出所有正确的序号)

正切函数在定义域内是增函数;

已知函数的最小正周期为,的图象向右平移个单位长度,所得图象关于轴对称,的一个值可以是

,三点共线;④函数的最小值为

函数上是增函数,的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,已知a1=2,a2为整数,且a3∈[3,5].

(1)求{an}的通项公式;

(2)设,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log4(22x+1)+mx的图象经过点 .

(Ⅰ)求m值并判断的奇偶性;

(Ⅱ)设gx)=log4(2x+x+afx),若关于x的方程fx)=gx)在x∈[-2,2]上有且只有一个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在 上的奇函数,当时,函数解析式为.

)求的值,并求出上的解析式;

)求上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形ABC的中线AF与中位线DE相交于G,已知AEDAEDDE旋转过程中的一个图形,给出以下四个命题:①AC平面ADF;②平面AGF平面BCED;③动点A′在平面ABC上的射影在线段AF上;④异面直线AEBD不可能垂直.其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案