精英家教网 > 高中数学 > 题目详情
(1)已知圆S:x2+y2=a2(a>0),直线l1:y=k1x+p交圆S于C、D两点,交直线l2:y=k2x于E点,若k1•k2=-1,证明:E是CD的中点;
(2)已知椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)
,直线l1:y=k1x+p交椭圆T于C、D两点,交直线l2:y=k2x于E点,若k1k2=-
b2
a2
.问E是否是CD的中点,若是,请给出证明;若不是,请说明理由.
分析:(1)联立直线l1,l2的方程,联立直线l1与圆的方程,确定CD中点坐标,利用韦达定理,即可得到结论;
(2)联立直线l1,l2的方程,联立直线l1与圆的方程,确定CD中点坐标,利用韦达定理,即可得到结论.
解答:证明:(1)若k1•k2=-1,则l2:y=-
1
k1
x
,与l1:y=k1x+p联立解得xE=-
k1p
1+k12

将l1:y=k1x+p与S:x2+y2=a2(a>0)联立消去y,整理得(1+k12)x2+2k1px+p2-a2=0
设C(x1,y1),D(x2,y2),CD的中点为M(x0,y0),
x0=
x1+x2
2
=
1
2
(-
2k1p
1+k12
)=-
k1p
1+k12
=xE

所以E与M重合,故E是CD的中点.            …(8分)
(2)证明:若k1k2=-
b2
a2
,则L2:y=-
b2
a2k1
x
,与l1:y=k1x+p联立,解得xE=-
a2k1p
b2+a2k12

将l1:y=k1x+p与T:
x2
a2
+
y2
b2
=1(a>b>0)
联立消去y,整理得(b2+a2k12)x2+2a2k1px+a2p2-a2b2=0
设C(x1,y1),D(x2,y2),CD的中点为M(x0,y0),
x0=
x1+x2
2
=
1
2
(-
2a2k1p
b2+a2k12
)=-
a2k1p
b2+a2k12
=xE

所以E与M重合,故E是CD的中点.            …(16分)
点评:本题考查直线与直线,直线与椭圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1x2+y2=1,椭圆C2
x2
3
+
2y2
3
=1
,四边形PQRS为椭圆C2的内接菱形.
(1)若点P(-
6
2
,  
3
2
)
,试探求点S(在第一象限的内)的坐标;
(2)若点P为椭圆上任意一点,试探讨菱形PQRS与圆C1的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=2,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量
OQ
=t
OA
+(1-t)
OB
(t∈R,t≠0)

(1)求动点Q的轨迹E的方程;
(2)当t=
2
2
时,过点S(0,-
1
3
)的动直线l交轨迹E于A,B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过T点?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知圆S:x2+y2=a2(a>0),直线l1:y=k1x+p交圆S于C、D两点,交直线l2:y=k2x于E点,若k1•k2=-1,证明:E是CD的中点;
(2)已知椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)
,直线l1:y=k1x+p交椭圆T于C、D两点,交直线l2:y=k2x于E点,若k1k2=-
b2
a2
.问E是否是CD的中点,若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省连云港市高二(下)期末数学试卷(理科)(解析版) 题型:解答题

(1)已知圆S:x2+y2=a2(a>0),直线l1:y=k1x+p交圆S于C、D两点,交直线l2:y=k2x于E点,若k1•k2=-1,证明:E是CD的中点;
(2)已知椭圆,直线l1:y=k1x+p交椭圆T于C、D两点,交直线l2:y=k2x于E点,若.问E是否是CD的中点,若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案