精英家教网 > 高中数学 > 题目详情
f(x)=[x](x-[x]),[x]为x的整数部分,g(x)=x-1当0≤x≤2012时,f(x)≤g(x)的解集为
[1,2012]
[1,2012]
分析:根据0≤x≤2012,分两种情况考虑:当0≤x<1时,[x]=0,可得出x-1小于0,进而确定出f(x)=0,g(x)小于0,进而得到此时f(x)大于g(x),不合题意;当1≤x≤2012时,假设n≤x<n+1,则[x]=n,表示出f(x),利用作差法判断出f(x)-g(x)的符合为负,可得出不等式f(x)≤g(x)的解集.
解答:解:当0≤x<1时,[x]=0,x-1<0,
∴f(x)=0,g(x)=x-1<0,即f(x)>g(x),不合题意;
当1≤x≤2012时,假设n≤x<n+1,则[x]=n,
∴f(x)=n(x-n),又g(x)=x-1,
∴f(x)-g(x)=n(x-n)-x+1=(n-1)x-n2+1<(n-1)(n+1)-n2+1=0,
∴不等式f(x)≤g(x)的解集为[1,2012].
故答案为:[1,2012]
点评:此题考查了其他不等式的解法,利用了分类讨论及转化的思想,是一道综合性较强的试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
4
x
(x>0)在区间
(0,2)
(0,2)
上递减;并利用单调性定义证明.函数f(x)=x+
4
x
(x>0)在区间
(2,+∞)
(2,+∞)
上递增.当x=
2
2
时,y最小=
4
4

(2)函数f(x)=x+
4
x
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
  x∈(0,+∞)的最小值,并确定相应的x的值,列表如下,请观察表中y值随x值变化的特点,完成下列问题:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若当x>0时,函数f(x)=x+
4
x
时,在区间(0,2)上递减,则在
 
上递增;
(2)当x=
 
时,f(x)=x+
4
x
,x>0的最小值为
 

(3)试用定义证明f(x)=x+
4
x
,x>0在区间上(0,2)递减;
(4)函数f(x)=x+
4
x
,x<0有最值吗?是最大值还是最小值?此时x为何值?
解题说明:(1)(2)两题的结果直接填写在答题卷中横线上;(4)题直接回答,不需证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各对函数表示同一函数的是(  )
(1)f(x)=x与g(x)=(
x
2                     
(2)f(x)=x-2与g(x)=
x2-4x+4

(3)f(x)=πx2(x≥0)与g(r)=πr2(r≥0)
(4)f(x)=|x|与g(x)=
x,x≥0
-x,x<0

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州中学高考数学一模试卷(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

同步练习册答案