精英家教网 > 高中数学 > 题目详情

已知⊙C:x2+y2-2x+4y-4=0,问是否存在斜率为1的直线l,使l被⊙C截得弦AB,以AB为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.

方法一:假设存在这样的直线l,且设为y=x+m.

⊙C化为(x-1)2+(y+2)2=9,圆心C(1,-2),则AB中点N是直线x-y+m=0与y+2=-(x-1)的交点,即N(-),

因为以AB为直径的圆过原点,所以|AN|=|ON|.

又CN⊥AB,|CN|=.

所以|AN|=.

又|ON|=

由|AN|=|ON|得m=1或m=-4.

所以存在符合条件的直线l,方程为x-y+1=0或x-y-4=0.

方法二:设这样的直线存在,其方程为y=x+b,它与圆C的交点设为A(x1,y1),B(x2,y2),

则由

得2x2+2(b+1)x+b2+4b-4=0,

所以

所以y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2.

由OA⊥OB得x1x2+y1y2=0,

所以2x1x2+b(x1+x2)+b2=0,

即b2+4b-4-b(b+1)+b2=0,整理得b2+3b-4=0,

所以b=1或b=-4.

所以存在符合条件的直线l,方程为x-y+1=0或x-y-4=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知⊙Cx2y2+2x-4y+1=0.

(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.

(2)从圆外一点P(x0y0)向圆引切线PMM为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C:x2+y2+2x-4y+1=0.

(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.

(2)从圆外一点P(x0,y0)向圆引切线PM,M为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.

查看答案和解析>>

科目:高中数学 来源:2015届广东省高一下学期第一次段考文科数学试卷(解析版) 题型:解答题

已知⊙Cx2y2+2x-4y+1=0.

(1)若⊙C的切线在x轴、y轴上截距相等,求切线的方程.

(2)从圆外一点P(x0y0)向圆引切线PMM为切点,O为原点,若|PM|=|PO|,求使|PM|最小的P点坐标.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年大纲版高三上学期单元测试(7)数学试卷解析版 题型:解答题

(本小题满分12分)已知⊙C:x2+y2-2x-2y+1=0,直线l与⊙C相切且分别交x轴、y轴正向于A、B两点,O为坐标原点,且=a,=b(a>2,b>2).

(Ⅰ)求线段AB中点的轨迹方程.

(Ⅱ)求△ABC面积的极小值.

 

查看答案和解析>>

同步练习册答案