精英家教网 > 高中数学 > 题目详情

已知各项均为正数的数列满足,且,其中.

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列满足是否存在正整数m、n(1<m<n),使得成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由。

 

【答案】

(Ⅰ)数列的通项公式为;(Ⅱ)存在,

【解析】

试题分析:(Ⅰ)求数列的通项公式,首先须知道数列的特征,由题意可得,,由于各项均为正数,故有即,这样得到数列是公比为的等比数列,由可求出,从而可得数列的通项公式;(Ⅱ)设数列满足是否存在正整数,使得成等比数列,首先求出数列的通项公式,,然后假设存在正整数,使得成等比数列,则,整理可得,只要即可,解不等式求出的范围,看是否有正整数,从而的结论.

试题解析:(Ⅰ)因为即

所以有即

所以数列是公比为的等比数列

解得

从而,数列的通项公式为。        6分

(II)=,若成等比数列,则

,可得

所以,解得:

,且,所以,此时

故当且仅当使得成等比数列。        13分

考点:等比数列的定义,及通项公式,探索性命题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较数学公式数学公式的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:青岛二模 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012年高考复习方案配套课标版月考数学试卷(二)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案