精英家教网 > 高中数学 > 题目详情
已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P且斜率为-
3
的直线与曲线M相交于A、B两点,求线段AB的长;
(3)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.
分析:(1)由题意,可知动圆圆心的轨迹为抛物线,从而可求轨迹M的方程;
(2)将直线方程与抛物线方程联立,可求A,B的坐标,从而可求AB长;
(3)假设△ABC能为正三角形,利用|AB|=|AC|=|BC|=
16
3
,导出矛盾,从而得解.
解答:解:(1)因为动圆M过定点P(1,0),且与定直线l:x=-1相切
所以由抛物线定义知:圆心M的轨迹是以定点P(1,0)为焦点,定直线l:x=-1为准线的抛物线
所以 圆心M的轨迹方程为y2=4x------(4分)
(2)由题知,直线AB的方程为y=-
3
(x-1)
------(6分)
所以
y=-
3
(x-1)
y2=4x
解得:A(
1
3
2
3
3
),B(3,-2
3
)
------(8分)
|AB|=
16
3
----(10分)
(3)假设△ABC能为正三角形,则设点C的坐标为(-1,y)---(11分)
由题知|AB|=|AC|=|BC|=
16
3
(13分)
即:(
4
3
)2+(y-
2
3
3
)2=42+(y+2
3
)2=(
16
3
)2
------(14分)
由于上述方程无实数解,因此直线l上不存在这样的点C.------(16分)
点评:本题以抛物线为载体,考查直线与抛物线的位置关系,考查存在性问题,关键是正确理解抛物线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-
3
的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•宝山区一模)已知动圆过定点P(1,0),且与定直线l:x=-1相切.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且倾斜角为120°的直线与曲线M相交于A,B两点,A,B在直线l上的射影是A1,B1
①求梯形AA1B1B的面积;
②若点C是线段A1B1上的动点,当△ABC为直角三角形时,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-
3
的直线与曲线M相交于A、B两点.问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学压轴试卷集锦(1)(解析版) 题型:解答题

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(Ⅰ)求动圆圆心的轨迹M的方程;
(Ⅱ)设过点P,且斜率为-的直线与曲线M相交于A,B两点.
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;
(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案