精英家教网 > 高中数学 > 题目详情
已知f(x)=,且f(1)=3,
(1)试求a的值,并证明f(x)在[,+∞)上单调递增.
(2)设关于x的方程f(x)=x+b的两根为x1,x2,试问是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意的b∈[2,]及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在说明理由.
【答案】分析:(1)将1代入函数关系式,即可求得;利用单调性的定义证明函数的单调性;
(2)利用韦达定理先求出|x1-x2|,变为不等式恒成立问题,再构造函数利用函数的导数求最值即可解决.
解答:解:(1)∵f(1)=3,∴a=1,∴f(x)=,设≤x1<x2
∴f(x2)-f(x1)=2x2+-(2x1+)=2(x2-x1)+=(x2-x1)(2-),
∵x2>x1,∴x1x2≥x12,∴0<<2,
∴2->0又x2-x1>0,∴f(x2)-f(x1)>0,∴f(x2)>f(x1),
∴f(x)在,+∞)上单调递增.
(2)∵f(x)=x+b,∴x2-bx+1=0,∴|x1-x2|=又2≤b≤,∴0≤|x1-x2|≤3,故只须当t∈[-1,1],使m2+mt+1≥3恒成立,记g(t)=tm+m2-2,只须:,∴,∴,∴m≥2或m≤-2,故m的取值集合是{m|m≥2或m≤-2}.
点评:本题主要考查函数的单调性,考查恒成立问题的处理,考查灵活运用数学知识分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=bx,g(x)=ax2+1,h(x)=lnx.(a,b∈R)
(1)若M={x|f(x)+g(x)≥0},-1∈M,2∈M,z=3a-b,求z的取值范围;
(2)设F(x)=
h(x)
f(x)
,且b<0,试判断函数F(x)的单调性;
(3)试证明:对?n∈N*,不等式ln(
1+n
n
)e
1+n
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列几个命题:
①函数y=
1
x+1
在(-∞,-1)∪(-1,+∞)上是减函数;
②已知f(x)在R上是增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b);
③已知函数y=f(x)是R上的奇函数,且当x≥0时,f(x)=x(1+
3x
)
,则当x<0时,f(x)=-x(1-
3x
)

④已知定义在R上函数f(x)满足对?x,y∈R,f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,则f(x)是R上的增函数;⑤如果a>1,则函数f(x)=ax-x-a(a>0且a≠1)有两个零点.
其中正确命题的序号是
 
.(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足(x-2)f′(x)>0,若2<a<4则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=3x2,则f(7)等于
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=loga
1-x
1+x
,(a>0且a≠1).
(1)若m,n∈(-1,1),求证f(m)+f(n)=f(
m+n
1+mn
);
(2)判断f(x)在其定义域上的奇偶性,并予以证明;
(3)确定f(x)在(0,1)上的单调性.

查看答案和解析>>

同步练习册答案